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MASS TRANSPORT IN REVERSE OSMOSIS
IN CASE OF VARIABLE DIFFUSIVITY
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Abstract—This paper analyzes the problem of concentration polarization in reverse osmosis in cases of
concentration dependent diffusivity. A numerical solution of the mass transport equation for the laminar
flow through two equally permeating, flat, parallel membranes is obtained. Three types of diffusivity-
concentration relationships; a linear, an exponential, and a parabolic—and two values of solute rejections
are investigated. The decrease in diffusivity with an increase in concentration is found to increase the value
of concentration polarization modulus over that obtained in the case of constant diffusivity under the
same system conditions. The increment is found to be larger for the case of a stronger diffusivity- concen-
tration relationship and for a larger magnitude of membrane wall concentration. A method is proposed
by which the effect of variable diffusivity on the value of concentration polarization modulus can be
calculated for a wide range of practical conditions using the existing theoretical results for the case of constant

diffusivity.

NOMENCLATURE y, transverse distance from channel mid-
solute concentration [1bm/ft*];. plane [ft];
dimensionless solute concentration Y, dimensionless transverse distance (y/h).
(c/co);
molecular diffusion coefficient of solute
[ft2/h]; Greek symbols' o '
balf-width of channel [ft]; o, normalized diffusion coefficient (D/v,h);

solute flux through membrane [lbm/ B, constant In equation (1);
,  constant in equation (1);

217- Y
gacl:t:ilc,)nal solute rejection = 1 — N/ A,  constant defined by equation (13);
v ! ¢, constant defined by equation (11);
velocity component in the x-direction ?e‘;egrfhg? value of ¢ over the channel
[ft/h]; I',  concentration polarization modulus de-

average value of u over the channel at
a given value of x [ft/h]; . .
. . ) . _ L 4, fraction of inlet solvent flow removed
dimensionless axial velocity (u/i,);
. . N through membrane wall;
velocity component in the y-direction . . .
[ft/h]; Arm, difference in osmotic pressure across
> membrane, p.s.i.;
AP, pressure drop across membrane, p.s.i.

fined by equation (10);

dimensionlesstransverse velocity (v/v,,4);
average value of ¥, over the channel

length;

longitudinal distance from channel inlet  Subscripts

[ft]; 0, channel inlet, i.c. x = O

dimensionless longitudinal distance w, channel wall, ie. at the membrane
(vio/to) (x/h); surface.
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INTRODUCTION

IN AN ultrafiltration or reverse osmosis process,
the aqueous slurry is concentrated by flowing
it through a semi-permeable membrane which
rejects the dissolved solids. The convective flow
of the solution carries solute up to the membrane
surface, and since solute is rejected by the mem-
brane it must diffuse back into the bulk aqueous
slurry. Thus, the solute concentration at the
membrane surface builds up to a value exceeding
the bulk concentration until the back diffu-
sion of solute produced by this concentration
gradient plus any solute passing through the
membrane just counter-balances the convec-
tion of solute to the membrane surface by the
solvent flowing through the membrane. This
building up of solute concentration at the
membrane surface has proven to have, in
general, detrimental effect on the separation
process [ 1-4]. Thus, the problem of solute con-
centration polarization is important in the
design of an effective membrane separation
process. In the case of reverse osmosis, this
problem has been studied and discussed by
Merten [2], Merten et al. [ 3], Gill et al. [ 5], Sher-
wood et al. [6] and Brian [7]. Strathmann [13]
has recently summarized the published infor-
mation available in this area.

The existing theoretical studies on concen-
tration polarization in reverse osmosis have
assumed constant transport properties. This
assumption, which is good in some cases such as
desalination by reverse osmosis, falls short of
reality in many other industrial applications of
membrane separation processes (€.g. concentra-
tions of aqueous sucrose solution and egg white
solution). In these cases transport properties
such as viscosity and diffusivity vary with con-
centration. Thus, a design of a membrane module
requires the knowledge of concentration polari-
zation in case of variable fluid properties.

Ginette and Merson [8] have recently carried
out theoretical analysis of muss transfer in
laminar flow of a viscous solution whose vis-
cosity varies with concentration. The purpose
of the present paper is to present the results

of a theoretical study on mass transport in
reverse osmosis for the case of variable diffusivity.
The effects of practical ranges of linear, parabolic
and exponential diffusivity—concentration re-
lationships on the concentration polarization
in laminar flow have been investigated. The
theoretical results are interpreted in terms of
their design application.

THEORETICAL

The problem analyzed is concentration polari-
zation in an aqueous solution flowing in a two-
dimensional channel between flat parallel mem-
branes when diffusivity varies with concentra-
tion. The diffusivity-concentration relationships
examined in the present study can be written
in the form of the following equation [9-11]:

D = Dy(1 + BC + yC?). (1)

By assigning the proper values to the coeffi-
cients f and y, equation (1) can be used to describe
a linear, a parabolic or the approximate series
expansion (up to the second order term) of an
exponential diffusivity—concentration relation-
ship. One such typical system of relationships
is described in Fig. 1.

The continuity equation for solute conser-
vation in this problem would be very similar to
one used by Brian [1]. This equation in a
dimensionless form can be written as

auc é
% +—|:VC — ao(l + BC + yC?)

Y
ac-
X —gJ:O. (2)
oY

The above equation considers convective
flow in the longitudinal direction and diffusion
and convection in the transverse direction, but
longitudinal diffusion is neglected. The normal-
ized solute concentration, C, is the local solute
concentration divided by the solute concentra-
tion in the feed at the channel inlet, and U and
Vrepresent the normalized velocity components
in the longitudinal and transverse directions,
respectively. The dimensionless coordinates,
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X and Y, represent dimensionless distances in
the longitudinal and transverse directions, re-
spectively: X would be numerically equal to the
fractional solvent removal at a given longi-
tudinal position if the solvent flux through the
membrane were to remain constant at its value
at the channel inlet. The origin of the coordinates
is at the channel half width of the inlet. The
normalized diffusion coefficient, ay(1 + C +
yC?)is defined as the diffusion coefficient divided
by the channel half-width and the flux through
the membrane at the channel inlet.

s

090, Curve (1)

Q
S Curve (2)
% 0-84 [~ Curve (3)
=l
s Curve Diffusivity—
o number concentration
070 relationship
° | O=0,(1-0-05¢ +0-00125¢2)
2 O=D,(1-0-05C)
3 D=0,(1-0-05¢?)
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Concentration, €

FiG. 1. Various types of diffusivity—concentration relation-
ship investigated in the present study

The boundary conditions to equation (2) in
the dimensionless form are

at X=0, any Y:C=1 3)
oC
t Y=0, X:—=0
a any 7 )
at Y =1, any X:oall + BC + yC?
oc
— =SVC.
x Iy (5)
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Equation (3)represents theassumption that the
solute concentration is uniform at the channel
inlet, and equation (4) implies symmetry with
respect to the mid-plane. This latter condition
is based upon the assumption that the two
membranes forming the channel walls are
identical in properties and are therefore per-
meating at equal rates. Equation (5) relates solute
diffusion and convection at the membrane
surface to the solute rejection, S, defined as 1
minus the ratio of the solute flux through the
membranes to the product of the permeation
velocity at the membrane surface and the solute
concentration at the membrane surface.

In order to integrate the non-linear differen-
tial equation (2), the velocity field must be known.
In the present study, a solution of Berman [12]
for the velocity field for the case in which the
solvent flux through the membrane is uniform
has been used. This solution for a smail permea-
tion Reynolds number (permeation Reynolds
number based upon the half-width of the channel
and the permeation velocity) in the dimensionless
form can be written as [1]

U =31 -4t -1 ©
V=1V, (;) (3-Y?. )

The above equations assume that the para-
bolic velocity profile is already developed at
X = 0. In equation (7), ¥, is the local value of
the permeation velocity divided by the per-
meation velocity at the channel inlet. The
quantity 4 is the fractional solvent removal,
obtained by integrating the permeation velocity
with respect to longitudinal position [1].

X
4=V, dx. 8)
0

For the case of a constant permeation velocity

V., is equal to unity and equation (8) simplifies

to
4 =X. )

In the analysis presented here, the volume
change upon mixing solutions of different
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solute concentrations is assumed to be negligible.
In considering membranes with incomplete
solute rejection, the solute rejection, S, is assumed
to be constant. The permeation flux in reverse
osmosis decreases with increasing recovery rate
because the osmotic pressure of the solution
increases with the increase in solute concentra-
tion [2]. However, Brian [7] has shown for the
case of constant fluid properties that the average
polarization over the length of the membrane
is very nearly the same for cases of constant and
variable permeation fluxes, if the average perme-
ation fluxes in both cases are equal in magnitude.
Based upon this finding, he has also suggested a
simplified procedure for predicting polarization
effects upon pressure drop requirements and
the solute concentration in the product solvent
using the theoretical results based upon the
assumption of constant permeation flux. Since
this procedure should be able to use for the
case of concentration-dependent diffusivity, the
assumption of constant permeation flux is made
in the present analysis.

The measure of concentration polarization is
designated by a parameter commonly called
concentration polarization modulus, I, which
is defined as [7]:

r=1+48g1-4-1 (10)

where

E=C,— 1. (11)

The parameter I as a function of X can be
obtained with the knowledge of the concentra-
tion at the membrane wall, C,,, as a function of
X. The latter relationship can be obtained from
the solution of equations (1}+9) for the concen-
tration profile within the channel.

RESULTS
The system of equations (1){7) was solved by
a finite difference method on an IBM 360
digital computer. A two-step, linearized, X-
centered finite-difference method was used.
This method isa modification of that proposed by
Douglas [13]. The non-linear term in equation
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(2) was linearized by evaluating the coefficients
at the previous grid point.

The convergence of the finite-difference solu-
tion was tested by changing the longitudinal
and transverse increments. For several values
of &, the computer solution with the values of
B and y equal to zero in equation (1), was checked
against the numerical solution of Brian [7].
They were found to be in good agreement. Based
upon these considerations, the finite difference
solutions are believed to be convergent within
less than 0-5 per cent.

For the three types of diffusivity-concentra-
tion relationships examined in the present
study the value of coefficient f was varied be-
tween —0-01 and —0-2 and that of y between
—005 and +002. These values of § and vy
are believed to represent the diffusivity—con-
centration relationships in the range of the most
practical interest [9-11].

The theoretical results obtained in the present
study are described in terms of parameters which
are important in the design of a membrane
separation process. These are I', concentration
polarization modulus; 4, fractional solvent
removal; and o, normalized diffusion coefficient.
The results are plotted as the curves of I' vs.
A/3a3 for the various values of a. This method of
data representation enables one to show a
comparison between the theoretical results of
the present study and the ones obtained by
Brian [1] for the case of constant diffusivity.

Figure 2 shows comparison between a plot
of I' vs. A/3a} for the cases of constant and
variable diffusivity. The results are shown for
the three different values of . For the variable
diffusivity case, an approximate exponential
diffusivity—concentration relationship with the
exponent value of —0-05 was chosen. The results
shown on this figure indicate that the deviation
in the values of concentration polarization
modulus for the two cases increases with an
increase in value of 4/302. Also, for a given value
of A/3a% the value of concentration polarization
modulus in case of variable diffusivity is always
higher than onefor the case of constant diffusivity.
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Fig. 2. Effect of variable diffusivity on concentration polarization moduli at various «;,
for the ease of constant permeation flux and complete solute rejection.

The results on the effect of various types of
diffusivity—concentration relationships on the
values of concentration polarization modulus
is described in Fig. 3. Three types of diffusivity—
concentration relationships; a linear, a parabolic
and an exponential, with a value of a, equal to
0-5 were examined. These results indicate that
in all three cases the deviation between the
values of I' for the constant and variable
diffusivity cases increases with an increase in
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FiG. 3. Effect of various types of diffusivity—concentration

relationship on concentration polarization moduli for the

case of constant permeation flux and complete solute
rejection.

value of 4/3a2. Also, the deviation is larger for
a stronger diffusivity—concentration relation-
ship. The same results in terms of a plot of
dimensionless wall concentration vs. di-
mensionless axial distance are described in

a0 Curve  Diffusivity-concentration
| number relationship
| a=05 .
2 a=05(-005¢C+0-00125C 2) /|
3 4=05(1-005¢) Curve (3)
4  a=05(-005¢?) e
v
2 e
o 7
/ /" Curve (2)
Ve

(&)
Q

n
(o)
17 1T 1T T T T T T TITrT ] T T T T T TTT

Dimensionless wall concentration,

rol ! L [ | |
o] 0-05 010 o115 020 0-25

Dimensionless axial distance, X
F1G. 4. Effect of variable diffusivity on wall concentration

for the case of constant permeation flux and complete solute
rejection
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FiG. 5. Effect of exponent coefficient of diffusivity—concentration relationship on concen-
tration polarization moduli for the case of constant permeation flux and complete solute
rejection.

Fig. 4. These results once again indicate that the
stronger the diffusivity—concentration relation-
ship, the larger the rate at which wall concentra-
tion builds up.

Since an exponential diffusivity-concentra-
tion relationship is the most common one
encountered in practice [9-11], the effect of

exponent coefficient on concentration polariza-
tion was investigated. Three values of exponent
coefficient; —0-01, —005 and —020 were
examined. The results of this study for a typical
value of a, and various values of 4/303 are
shown in Fig. 5. These results indicate that for a
large value of A/3a3, the value of exponent
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Fi1G. 6. Effect of variable diffusivity on concentration polarization moduli for the case of
constant permeation flux and solute rejection = 0-8.
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coefficient strongly affects the value of con-
centration polarization modulus.

The effect of variable diffusivity on the values
of concentration polarization modulus was
also examined for a value of solute rejection
equal to 0-8. The results of this study in terms of
a plot of I' vs. 4/3«Z are shown in Fig. 6. These
results are described for two different values
of a. The results once again indicate that the
deviation between values of concentration polari-
zation modulus in two cases increases with an
increase in the values of 4/3a3.

DISCUSSION

Since concentration polarization is caused by
lack of mixing in the fluid, the diffusivity should
have an important role in determining the extent
of concentration build-up at the membrane
surface. Obviously, the smaller the diffusivity,
the larger the concentration build-up should be
at the membrane wall. For the case of constant
diffusivity this has been verified by Sherwood
et al. [6] and Brian [1, 7]. In the case of variable
diffusivity, as membrane wall concentration
builds up, the effective diffusion coefficient
decreases and this should further increase the
concentration build-up rate at the membrane
surface. Thus, the net effect of decrease in
diffusivity with concentration is to increase the
concentration polarization at any downstream
position over one obtained for the case of con-
stant diffusivity under the same system condi-
tions.

Based upon the above explanation, the devia-
tion in the values of concentration polarization
modulus for the variable and the constant dif-
fusivity cases should increase with an increase
in the difference in the values of diffusivity.
Hence, for the given values of a, and 4/3a3, the
deviation should be larger in the case of a
stronger diffusivity—concentration relationship.
For the same values of the pertinent coefficients
in equation (1) and those of a, and A/3a3, a
parabolic diffusivity—concentration relationship
should thus predict a much larger deviation
in the values of concentration polarization
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modulus than a linear or an exponential diffusi-
vity—concentration relationship. The results of
Fig. 3 indicate this to be the case.

With the same line of reasoning as described
above, one should expect the difference in the
values of I' predicted for the variable and the
constant diffusivity cases to be a strong function
of the actual magnitude of wall concentration.
This is because the larger the magnitude of this
concentration, the larger would be the difference
in the effective values of diffusivity in the two
cases. The results of Figs. 2, 4-6 validate this
expectation.

The above described explanation of the theo-
retical results appear to be compatible with the
physics of the process. It also suggests that one
may be able to calculate concentration polariza-
tion modulus in the case of variable diffusivity
with the use of the theoretical results of Brian
[1, 7], if one takes proper account of variation
in a with the downstream position. Based upon
this premise, the following alternate four step
method to obtain the plots of I' vs. 4/3a3 at
various values of o in the cases of variable
diffusivity was examined.

1. Calculate A/322 and obtain I' for given
values of a, and 4/3a2 using the theoretical
results of Brian [3].

2. Obtain a value of dimensionless wall
concentration from the calculated values of I'
and 4.

3. Using the calculated value of wall concen-
tration, obtain an actual value of a from the
diffusivity—concentration relationship.

4. Calculate a new value of I' at the actual
values of a and A/3x® using the theoretical
results of Brian [1, 7]. This will be then the
actual value of I" corresponding to the value of
A/3a in a case of variable diffusivity.

For several cases examined in the present
study, the plots of I' vs. 4/3a2 were obtained
using the above described proposed method.
These results are compared in Fig. 7 with the
ones obtained from numerical solution of
equations (1)+7). As indicated in the figure, the
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comparison was made for various diffusivity—
concentration relationship and for the two values
of solute rejection. The results indicate that at
least within the range of diffusivity-concentra-
tion relationships examined in the present study,
the proposed method works quite well. At
present, there is no mathematical proof available
for the success of the proposed method. However,

Theoretical results of the present study

~—— Results predicted by the proposed method using Brian's
analysis

100 curve Solute Diffusivity-concentration

[— number rejection relationship

- 08 a=20(-01C+0005¢?)

08 a=05(-0ICc+0005c?)
10 a=05(-0IC+0005¢C7)
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1o

a=05(1-005C?) Curve (4)//

Curve(3)
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i
Curve (2)

Curve (1)
ol Lol L1
[e)ele]] o0l 0l 10
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FiG. 7. Comparison between the theoretical results of the
present study with the ones predicted using Brian’s analysis
by the proposed method.

it is believed that for the cases examined in the
present research, the proper accounts for the
variation in the magnitude of a with the down-
stream positions were taken by the proposed
method.

UTILITY OF PRESENT ANALYSIS
IN THE DESIGN OF PRACTICAL
REVERSE OSMOSIS UNITS

In the design of a practical reverse osmosis
unit, the knowledge of the operating pressure
required to obtain a specified solvent production
with a given membrane is of great importance.
This is because operating costs for running a
reverse osmosis unit depends significantly upon
the operating pressure. In the present analysis,
the solute concentration at the membrane
surface, C,, was evaluated for the various
system conditions when the solute diffusion

coefficient is dependent upon the solute con-
centration. Let us now, with the help of an
illustrative example, look at how the information
obtained in the present analysis can be used to
obtain the operating pressure for a specific
Teverse osmosis unit.

Brian [7] reports that assuming the osmotic
pressure is directly proportional to the solute
concentration and that pressure drop across
membrane, AP, is essentially constant, the
following relationship can be written for the
average permeation flux, V,, over the entire
channel

V,=1- 2 (12)
where
Sz,
A= AP — Sm, (13)
and
X
S |
=- | (C, — DdX" 14
¢ 3 J( w—1) (14)
0

In equation (13), =, is the osmotic pressure at
the inlet feed concentration. For the given values
of V,, X, ay, S and from the results shown in
Figs. 2-7, AP, the required design parameter,
can be calculated from equations (12){14). This
type of calculation for an hypothetical reverse
osmosis unit used for the concentration of
sucrose-water solution is briefly outlined below.
The following data are used in this calculation.

S=10

ao = 0-5(evaluated at the average permeation

flux)

vV, =030

no = 36 ps.i. (obtained from [9] assuming
the molality of the feed solution to be 0-1)
a=uwn, ¢ 9% (an approximate relation
obtained from the diffusivity—concentra-
tion data for the sucrose-water system
reported in [9]) (15)

X = 025.

Assuming o to be constant at the value of a,,
from equation (14) and Fig. 4, £ can be calculated
to be equal to 1-266. Similarly assuming a to be
function of concentration as given by equation
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(15), & can be calculated to be 1-390. The mem-
brane wall concentration as a function of X for
the diffusivity—concentration relationship de-
fined by equation (15) was obtained by the linear
interpolations between the C,, vs. X curves for
o = 0-5exp (—0-05 C) and « = 0-5 shown in Fig.
4. Thus, from equations(12)and (13)and using the
data listed above, the values of AP for the two
cases can be calculated to be approximately
equal to 101 p.si. and 108 p.s.i. respectively.
This means that even for a small value of X
examined here, there would be approximately
7 per cent error in the calculation of AP if the
diffusivity were to be assumed constant at
its channel inlet value. It should be noted that
the difference in the AP values for the constant
and the variable diffusivity cases will increase
rapidly with increase in X because as shown in
Fig. 4, the membrane wall concentrations for the
two cases diverges from each other more and
more with increasing value of X. It should also
be noted that the calculation of € can also be
carried out with the help of results similar to
ones shown in Figs. 2, 3, 5-7 because I" and ¢
are related to each other as shown by equation
(10).
CONCLUSION

It is concluded from the present study that
the net effect of decrease in diffusivity with
concentration is to increase solute build-up at
the membrane surface in a reverse osmosis
process. This increment is larger for a stronger
diffusivity—concentration  relationship. The
theoretical results of Sherwood et al. [6] and

Brian [1, 7] for the case of constant diffusivity -

can be used to calculate concentration polariza-
tion moduli at various downstream positions in
the case of variable diffusivity by the method
proposed in this paper.
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TRANSPORT MASSIQUE DANS L’OSMOSE INVERSE DANS LE CAS D’'UNE DIFFUSIVITE
VARIABLE

Résumé—Cet article analyse le probléme de polarisation par concentration dans ’osmose inverse lorsque
la diffusivité dépend de la concentration. On obtient une solution numérique de ’équation du transport
massique pour I’écoulement laminaire i travers deux membranes paralleles, plates et également perméables.
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On considére trois types de relations entre diffusivité et concentration, une linéaire, une exponentielle et
une paraboligue. On trouve que la décroissance de la diffusivité avec un accroissement de concentration,
augmente la valeur du module de polarisation par concentration par rapport  celle obtenue dans le cas
d’une diffusivité constante dans les mémes conditions du systéme. L’augmentation est plus grande dans
le cas d’une relation entre diffusivité et concentration plus forte, et pour une plus grande concentration &
1a paroi de la membrane. On propose une méthode par laquelle I'effet de diffusivité variable sur la valeur
du module de polarisation par concentration peut étre calculé pour une large gamme de conditions
pratiques en utilisant les résultats théoriques existants dans le cas d"une diffusion constante.

STOFFUBERTRAGUISG BEI UMGEKEHRTER OSMOSE FUR DEN FALL
VERANDERLICHER DURCHLASSIGKEIT

Zusammenfassung-—Die Arbeit analysiert das Problem der Konzentrationspolarisation bei umgekehrter
Osmose fiir den Fall konzentrationsabhingiger Durchldssigkeit, Das Ergebnis ist eine numerische Losung
der Stofftransportgleichung fiir die laminare Strémung durch 2 gleich durchlissige, flache, parallele
Membranen, Es werden 3 Arten der Abhingigkeit der Durchliissigkeit von der Konzentration untersucht:
eine lineare, eine exponentielle und eine parabolische Abhéngigkeit und 2 Werte von Losungsundurchlis-
sigkeit. Die Abnahme der Durchlissigkeit mit dem Ansteigen der Konzentration erhoht den Konzen-
trations-Polarisations-Modul gegeniiber den Werten fiir den Fall konstanter Durchlissigkeit bei sonst
gleichen Systembedingungen. Fiir eine stirkere Abhingigkeit der Durchlissigkeit von der Konzentration
und fiir héhere Werte der Konzentration an der Membran ist diese Erhéhung grosser.

Es wird eine Methode vorgeschlagen, mit deren Hilfe die Wirkung der verdnderlichen Durchldssigkeit
auf die Grosse des Konzentrations-Polarisations-Moduls in einem weiten Bereich praktisch vorkom-
mender Bedingungen berechnet werden kann, wobei die vorhandenen theoretischen Losungen fiir den

Fall konstanter Durchldssigkeit beniitzt werden,

NEPEHOC MACCBI ITPM OBPATHOM OCMOCE B CJYYAE ITEPEMEHHOT'O
HOROQOUINEHRTA TNOPOY3UU

ABHoTamua—B fauso#l paboTe aHATHIHpYETCA 3aaYa KOHIEHTPALHOHHON UHOJNSpIIALIG
npu oGpaTHOM ocMoce ANA cayvad wosddmumuenta guddysun, 3aBHCALIETO OT KOHLUEHT-
rpanuu. [lonyvyeHno YHCAeHHOE pelieHHe YPABHOHMA TIEPEHOCA MACCH [JAA JAMIHAPHOro
TeYeHHUA Yepes ABe MJOCKHe NAPAIeNbHbe MeMOpAaHBL ¢ OJHHAKOBOH NPOHULAEMOCTLK).
Hecaegyerca TpH THDA 3aBHCHMOCTH MeKAy Kos(duunentom xuddysun i wourenTpaleii-
IUHeRHAA, PRCIIOHEHIMANbHAA U napabomideckas. Hailigeno, uto ymennienue Kood@uienta
Auddysun ¢ yBeInieHHEeM KOHIEHTPAIMM BBI3BIBAET YBeHUeHIe MOLYJIH KOHUCHTDAMOHHOI
TIONAPH3ALMH NO CPABHEHMIO €O B3HAYEHNeM, HOTYUEHHBIM B (Jy4ae HOCTOHHHOIO KO-
epbuumenra guddysun npu Tex ke ycuoBusx. Haligeno, uro ypemuivenie foabiue juis
cuydas Ooxee cuiabHOH saBucumocTH Koedduiumenta auddysunn OT KOHOEHTpALUM iy
crenre memGpansl. IlpexmonaraeTcA MeTOH, ¢ MOMOIBI0 KOTOPOTO RIMAHIE MEPEMEHHOTO
rkoapdpurenra anddysnn Ha 3HAYEHHEM MOJYJIA KOHIEHTDALHMOHHON MOJAPNIALNH MOMeT
pPACCYUTHBATLCA A IIMPOKOTO AUANa30Ha VCIOBHI, HCIOIB3YA TeOpeTHyeCKHe penyIbTaThl
IUIA Cay4ad NOCTORHHOTO Koaddummenta auddyau.



