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Abstract-This paper analyzes the problem of concentration polarization in reverse osmosis in cases of 
concentration dependent diffusivity. A numerical solution of the mass transport equation for the laminar 
flow through two equally permeating, flat, parallel membranes is obtained. Three types of diffusivity- 
concentration relationships; a linear, an exponential, and a parabolic-and two values of solute rejections 
are investigated. The decrease in diffusivitv with an increase in concentration is found to increase the value 
of concencation polarization modulus over that obtained in the case of constant diffusivity under the 
same system conditions. The increment is found to be larger for the case of a stronger diffusivity- concen- 
tration relationship and for a larger magnitude of membrane wall concentration. A method is proposed 
by which the effect of variable diffusivity on the value of concentration polarization modulus can be 
calculated for a wide range ofpractical conditions using the existing theoretical results for thecase ofconstant 

diffusivity. 

NOMENCLATURE Y, transverse distance from channel mid- 
solute concentration [lbm/ft3] ; plane [ft] ; 
dimensionless solute concentration I: dimensionless transverse distance (y/h). 

molecular diffusion coefficient of solute 

W/hi; Greek symbols 

half-width of channel [ft]; 
solute flux through membrane [lbm/ 
ft2 h]; 
fractional solute rejection = 1 - NJ 

c,%J; 
velocity component in the x-direction 

[ft/hl; 
average value of u over the channel at 
a given value of x [ft/h] ; 
dimensionless axial velocity (u/&J; 
velocity component in the y-direction 

[ft/h] ; 

r, 

normalized diffusion coefficient (D/v,h); 
constant in equation (1); 
constant in equation (1); 
constant defined by equation (13); 
constant defined by equation (11); 
average value of F over the channel 
length; 

dimensionlesstransversevelocity(v/v,,); 
average value of VW over the channel 
length ; 

A, 

A713 

AP. pressure drop across membrane, p.s.i. 

concentration polarization modulus de- 
fined by equation (10); 
fraction of inlet solvent flow removed 
through membrane wall; 
difference in osmotic pressure across 
membrane, p.s.i.; 

longitudinal distance from channel inlet Subscripts 
[ftl; 0, channel inlet, i.e. x = 0; 
dimensionless longitudinal distance w, channel wall, i.e. at the membrane 
(vwd%,) (x/h) ; surface. 
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INTRODUCTION 

IN AN ultrafiltration or reverse osmosis process, 
the aqueous slurry is concentrated by flowing 
it through a semi-permeable membrane which 
rejects the dissolved solids. The convective flow 
of the solution carries solute up to the membrane 
surface, and since solute is rejected by the mem- 
brane it must diffuse back into the bulk aqueous 
slurry. Thus, the solute concentration at the 
membrane surface builds up to a value exceeding 
the bulk concentration until the back diffu- 
sion of solute produced by this concentration 
gradient plus any solute passing through the 
membrane just counter-balances the convec- 
tion of solute to the membrane surface by the 
solvent flowing through the membrane. This 
building up of solute concentration at the 
membrane surface has proven to have, in 
general, detrimental effect on the separation 
process [14]. Thus, the problem of solute con- 
centration polarization is important in the 
design of an effective membrane separation 
process. In the case of reverse osmosis, this 
problem has been studied and discussed by 
Merten [2], Merten et al. [3], Gill et al. [5], Sher- 
wood et al. [6] and Brian [7]. Strathmann [13] 
has recently summarized the published infor- 
mation available in this area. 

The existing theoretical studies on concen- 
tration polarization in reverse osmosis have 
assumed constant transport properties. This 
assumption, which is good in some cases such as 
desalination by reverse osmosis, falls short of 
reality in many other industrial applications of 
membrane separation processes (e.g. concentra- 
tions of aqueous sucrose solution and egg white 
solution). In these cases transport properties 
such as viscosity and diffusivity vary with con- 
centration. Thus, a design of a membrane module 
requires the knowledge of concentration polari- 
zation in case of variable fluid properties. 

Ginette and Merson [S] have recently carried 
out theoretical analysis of mass transfer in 
laminar flow of a viscous solution whose vis- 
cosity varies with concentration. The purpose 
of the present paper is to present the results 

of a theoretical study on mass transport in 
reverse osmosis for the case of variable diffusivity. 
The effects of practical ranges of linear, parabolic 
and exponential diffusivityyconcentration re- 
lationships on the concentration polarization 
in laminar flow have been investigated. The 
theoretical results are interpreted in terms of 
their design application. 

THEORETICAL 

The problem analyzed is concentration polari- 
zation in an aqueous solution flowing in a two- 
dimensional channel between flat parallel mem- 
branes when diffusivity varies with concentra- 
tion. The diffusivity-concentration relationships 
examined in the present study can be written 
in the form of the following equation [9-l l] : 

D = D,(l + pc + yC2). (1) 

By assigning the proper values to the coefli- 
cients b and y, equation (1) can be used to describe 
a linear, a parabolic or the approximate series 
expansion (up to the second order term) of an 
exponential diffusivity-concentration relation- 
ship. One such typical system of relationships 
is described in Fig. 1. 

The continuity equation for solute conser- 
vation in this problem would be very similar to 
one used by Brian [l]. This equation in a 
dimensionless form can be written as 

i?(UC) a 
7 + ay z/c - cr,(l + j3c + yC2) 

[ 
iK- 

x ai 1 = 0. (2) 

The above equation considers convective 
flow in the longitudinal direction and diffusion 
and convection in the transverse direction, but 
longitudinal diffusion is neglected. The normal- 
ized solute concentration, C’, is the local solute 
concentration divided by the solute concentra- 
tion in the feed at the channel inlet, and U and 
Z/represent the normalized velocity components 
in the longitudinal and transverse directions, 
respectively. The dimensionless coordinates, 
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X and Y represent dimensionless distances in 
the longitudinal and transverse directions, re- 
spectively: X would be numerically equal to the 
fractional solvent removal at a given longi- 
tudinal position if the solvent flux through the 
membrane were to remain constant at its value 
at the channel inlet. The origin of the coordinates 
is at the channel half width of the inlet. The 
normalized diffusion coefficient, a,(1 + flC + 
yC2) is defined as the diffusion coefficient divided 
by the channel half-width and the flux through 
the membrane at the channel inlet. 

E CUWe Diffusivity- 
0 number concentration 

D-&(I-0~05C+O~OO125Cz) 

2 L7-D,cl-o~05c, 
3 D-DJ I -0.05C~) 

\ I 

\I 
0 woo I I I I I I\ I 

05 10 IS 2.0 25 30 

Concentration, C 

FIG. 1. Various types of diffusivity-concentration relation- 
ship investigated in the present study 

The boundary conditions to equation (2) in 
the dimensionless form are 

at X = 0, any Y: C = 1 (3) 

at Y=O, any X:g=O (4) 

at Y = 1, any X: a,(1 + PC + yC2) 

ac 
x ay = svc. (5) 

Equation (3) represents the assumption that the 
solute concentration is uniform at the channel 
inlet, and equation (4) implies symmetry with 
respect to the mid-plane. This latter condition 
is based upon the assumption that the two 
membranes forming the channel walls are 
identical in properties and are therefore per- 
meating at equal rates. Equation (5) relates solute 
diffusion and convection at the membrane 
surface to the solute rejection, S, defined as 1 
minus the ratio of the solute flux through the 
membranes to the product of the permeation 
velocity at the membrane surface and the solute 
concentration at the membrane surface. 

In order to integrate the non-linear differen- 
tial equation (2), the velocity field must be known. 
In the present study, a solution of Berman [12] 
for the velocity field for the case in which the 
solvent flux through the membrane is uniform 
has been used. This solution for a small permea- 
tion Reynolds number (permeation Reynolds 
number based upon the half-width of the channel 
and the permeation velocity) in the dimensionless 
form can be written as [l] 

U=+(l-d)(l-Y2) (6) 

V = VW ; (3 - Y2). 
0 

(7) 

The above equations assume that the para- 
bolic velocity profile is already developed at 
X = 0. In equation (7) VW is the local value of 
the permeation velocity divided by the per- 
meation velocity at the channel inlet. The 
quantity A is the fractional solvent removal, 
obtained by integrating the permeation velocity 
with respect to longitudinal position [ 11. 

A = j VW dx’. 
0 

For the case of a constant permeation velocity 
VW is equal to unity and equation (8) simplifies 
to 

A = X. (9) 

In the analysis presented here, the volume 
change upon mixing solutions of different 
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solute concentrations is assumed to be negligible. 
In considering membranes with incomplete 
solute rejection, the solute rejection, S, is assumed 
to be constant. The permeation flux in reverse 
osmosis decreases with increasing recovery rate 
because the osmotic pressure of the solution 
increases with the increase in solute concentra- 
tion [2]. However, Brian [7] has shown for the 
case of constant fluid properties that the average 
polarization over the length of the membrane 
is very nearly the same for cases of constant and 
variable permeation fluxes, if the average perme- 
ation fluxes in both cases are equal in magnitude. 
Based upon this finding, he has also suggested a 
simplified procedure for predicting polarization 
effects upon pressure drop requirements and 
the solute concentration in the product solvent 
using the theoretical results based upon the 
assumption of constant permeation flux. Since 
this procedure should be able to use for the 
case of concentration-dependent diffusivity, the 
assumption of constant permeation flux is made 
in the present analysis. 

The measure of concentration polarization is 
designated by a parameter commonly called 
concentration polarization modulus, r, which 
is defined as [7]: 

r=(l +t)(l -A)- 1 (10) 

where 

l=C,-1. (11) 

The parameter r as a function of X can be 
obtained with the knowledge of the concentra- 
tion at the membrane wall, C,, as a function of 
X. The latter relationship can be obtained from 
the solution of equations (l)--(9) for the concen- 
tration profile within the channel. 

RESULTS 

The system of equations (lH7) was solved by 
a finite difference method on an IBM 360 
digital computer. A two-step, linearized, X- 
centered finite-difference method was used. 
This method is amodification ofthat proposed by 
Douglas [13]. The non-linear term in equation 

(2) was linearized by evaluating the coefficients 
at the previous grid point. 

The convergence of the finite-difference solu- 
tion was tested by changing the longitudinal 
and transverse increments. For several values 
of a,, the computer solution with the values of 
b and y equal to zero in equation (l), was checked 
against the numerical solution of Brian [7]. 
They were found to be in good agreement. Based 
upon these considerations, the finite difference 
solutions are believed to be convergent within 
less than 0.5 per cent. 

For the three types of diffusivity-concentra- 
tion relationships examined in the present 
study the value of coefficient p was varied be- 
tween -0.01 and -0.2 and that of y between 
-0.05 and + O-02. These values of fl and y 
are believed to represent the diffusivity-con- 
centration relationships in the range of the most 
practical interest [9-l 11. 

The theoretical results obtained in the present 
study are described in terms of parameters which 
are important in the design of a membrane 
separation process. These are r, concentration 
polarization modulus; A, fractional solvent 
removal: and CI, normalized diffusion coefficient. 
The results are plotted as the curves of r vs. 
A/3c4 for the various values of tx. This method of 
data representation enables one to show a 
comparison between the theoretical results of 
the present study and the ones obtained by 
Brian [l] for the case of constant diffusivity. 

Figure 2 shows comparison between a plot 
of r vs. A/3c(g for the cases of constant and 
variable diffusivity. The results are shown for 
the three different values of CI~. For the variable 
diffusivity case, an approximate exponential 
diffusivity-concentration relationship with the 
exponent value of - 0.05 was chosen. The results 
shown on this figure indicate that the deviation 
in the values of concentration polarization 
modulus for the two cases increases with an 
increase in value of A/3@:. Also, for a given value 
of A/314 the value of concentration polarization 
modulus in case of variable diffusivity is always 
higher thanoneforthecaseofconstant diffusivity. 
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Curve Diffusivity-concentration 
number relationship 

: 
(I =2.0 
a =2~0(1-0~05C+0~00125C2~ 

3 aaO.5 / 

IO0 4 a= 0.5(1-0.05C +000125C*) Curve (6) 

: 
a- 0.1 \ / 

,’ 

a- O.l(l-OO5C tOOOl25C”) 

1 

FIG. 2. Effect of variable diffusivity on concentration polarization moduli at various a,,, 
for the ease of constant permeation flux and complete solute rejection. 

The results on the effect of various types of 
diffusivity-concentration relationships on the 
values of concentration polarization modulus 
is described in Fig. 3. Three types of diffusivity- 
concentration relationships; a linear, a parabolic 
and an exponential, with a value of t1,, equal to 
0.5 were examined. These results indicate that 
in all three cases the deviation between the 
values of r for the constant and variable 
diffusivity cases increases with an increase in 

I , 

CWW DlffUSIVlty--concen+rot,on 
number relationshm I 

IO 0 

1 
a-05 
a-05(1-005C+000125CL) 

3 0-o 5ll-0.05C) 
4 a=0~5(1-005C~) 

curve (2) 

r - 

IO: 

PIG. 3. Effect of various types of diffusivity-concentration 
relationship on concentration polarization moduli for the 
case of constant permeation flux and complete solute 

rejection. 

value of A/3ai. Also, the deviation is larger for 
a stronger diffusivityconcentration relation- 
ship. The same results in terms of a plot of 
dimensionless wall concentration vs. di- 
mensionless axial distance are described in 

4-o- 
Curve Diffuslvity-concentration 

number relationship 

I a -0.5 
2 
3 

;-0.5(1-005C+000125t2 ) Curve c3j , 
a- 05(1-005c) 

4 a- 0~5(1-0~05c~) 

I-O I I I I I 
0 0.05 0.10 0.15 O-20 O-25 

Dimensionlessaxial distance, X 

FIG. 4. Effect of variable diffusivity on wall concentration 
for the case of constant permeation flux and complete solute 

rejection 
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100~0 
Curve Diffusivity-concentration 

number relationship 
I a = O-I 
2 a = 0 l(l-Oolcto~ooOO5c*) 
3 a= O~I(I-O-O~C+O~OO~~~C+~ 
4 a = O.I(I- 0~2C+o~o2c2) 

FIG. 5. Effect of exponent coefficient of diffusivity<oncentration relationship on concen- 
tration polarization moduli for the case of constant permeation flux and complete solute 

rejection. 

Fig. 4. These results once again indicate that the exponent coefficient on concentration polariza- 
stronger the diffusivity-concentration relation- tion was investigated. Three values of exponent 
ship, the larger the rate at which wall concentra- coefficient; -001, -0.05 and -020 were 
tion builds up. examined. The results of this study for a typical 

Since an exponential diffusivity-concentra- value of CY,, and various values of A/3ai are 
tion relationship is the most common one shown in Fig. 5. These results indicate that for a 
encountered in practice [9-111, the effect of large value of A/3& the value of exponent 

IO 
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01 

Curve Diffusivity- concentration 
number relationship 
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2 a-2 O(I-01c+0~005C~) 
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4 a=05(1-0~IC+0~005C~) 

0: 

,o- 
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‘Oo7 

Curve (4) 

~~~ 

JO, 001 01 10 

FIG. 6. Effect of variable diffusivity on concentration polarization moduli for the case of 
constant permeation flux and solute rejection = 0.8. 
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coefficient strongly affects the value of con- 
centration polarization modulus. 

The effect of variable diffusivity on the values 
of concentration polarization modulus was 
also examined for a value of solute rejection 
equal to 08. The results of this study in terms of 
a plot of r vs. A/3ui are shown in Fig. 6. These 
results are described for two different values 
of tl. The results once again indicate that the 
deviation betweenvalues ofconcentration polari- 
zation modulus in two cases increases with an 
increase in the values of A/3ai. 

DISCUSSION 

Since concentration polarization is caused by 
lack of mixing in the fluid, the diffusivity should 
have an important role in determining the extent 
of concentration build-up at the membrane 
surface. Obviously, the smaller the diffusivity, 
the larger the concentration build-up should be 
at the membrane wall. For the case of constant 
diffusivity this has been verified by Sherwood 
et al. [6] and Brian [l, 71. In the case of variable 
diffusivity, as membrane wall concentration 
builds up, the effective diffusion coefficient 
decreases and this should further increase the 
concentration build-up rate at the membrane 
surface. Thus, the net effect of decrease in 
diffusivity with concentration is to increase the 
concentration polarization at any downstream 
position over one obtained for the case of con- 
stant diffusivity under the same system condi- 
tions. 

Based upon the above explanation, the devia- 
tion in the values of concentration polarization 
modulus for the variable and the constant dif- 
fusivity cases should increase with an increase 
in the difference in the values of diffusivity. 
Hence, for the given values of a,, and A/3ag, the 
deviation should be larger in the case of a 
stronger diffusivity-concentration relationship. 
For the same values of the pertinent coefficients 
in equation (1) and those of a0 and A/3& a 
parabolic diffusivity-concentration relationship 
should thus predict a much larger deviation 
in the values of concentration polarization 

modulus than a linear or an exponential diffusi- 
vity-concentration relationship. The results of 
Fig. 3 indicate this to be the case. 

With the same line of reasoning as described 
above, one should expect the difference in the 
values of r predicted for the variable and the 
constant diffusivity cases to be a strong function 
of the actual magnitude of wall concentration. 
This is because the larger the magnitude of this 
concentration, the larger would be the difference 
in the effective values of diffusivity in the two 
cases. The results of Figs. 2, 4-6 validate this 
expectation. 

The above described explanation of the theo- 
retical results appear to be compatible with the 
physics of the process. It also suggests that one 
may be able to calculate concentration polariza- 
tion modulus in the case of variable diffusivity 
with the use of the theoretical results of Brian 
[l, 71, if one takes proper account of variation 
in a with the downstream position. Based upon 
this premise, the following alternate four step 
method to obtain the plots of r vs. A/3& at 
various values of c1 in the cases of variable 
diffusivity was examined. 

1. Calculate A/3ai and obtain J-’ for given 
values of a,, and A/3ag using the theoretical 
results of Brian [3]. 

2. Obtain a value of dimensionless wall 
concentration from the calculated values of r 
and A. 

3. Using the calculated value of wall concen- 
tration, obtain an actual value of a from the 
diffusivity-concentration relationship. 

4. Calculate a new value of r at the actual 
values of a and A/3a2 using the theoretical 
results of Brian [l, 71. This will be then the 
actual value of r corresponding to the value of 
413~; in a case of variable diffusivity. 

For several cases examined in the present 
study, the plots of r vs. A/3ai were obtained 
using the above described proposed method. 
These results are compared in Fig. 7 with the 
ones obtained from numerical solution of 
equations (l)-(7). As indicated in the figure, the 
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comparison was made for various diffusivity- 
concentration relationship and for the two values 
of solute rejection. The results indicate that at 
least within the range of diffusivity-concentra- 
tion relationships examined in the present study, 
the proposed method works quite well. At 
present, there is no mathematical proof available 
for the success of the proposed method. However, 

~ Theoretical re*“lts Of the present srudy 
--- Results predtcted by the proposed method wng Brian’s 

a”alySiS 
IO 0 Curve so,u,e Dlffuslvlfy-concentrat,on 

number relecf~on relatIonshIp 

a =20(1-01C+OO05C2) 
a =05(1-O lc+ooo5c~) 
o-05l1-0ICt0005C~) 
a=0 5(1-O 05C) 
a=0 5(1-O 05CZ) 

IO 

01 
0 001 001 01 IO 

A/3 a2 

FIG. 7. Comparison between the theoretical results of the 
present study with the ones predicted using Brian’s analysis 

by the proposed method. 

it is believed that for the cases examined in the 
present research, the proper accounts for the 
variation in the magnitude of a with the down- 
stream positions were taken by the proposed 
method. 

UTILITY OF PRESENT ANALYSIS 
IN THE DESIGN OF PRACTICAL 

REVERSE OSMOSIS UNITS 

In the design of a practical reverse osmosis 
unit, the knowledge of the operating pressure 
required to obtain a specified solvent production 
with a given membrane is of great importance. 
This is because operating costs for running a 
reverse osmosis unit depends significantly upon 
the operating pressure. In the present analysis, 
the solute concentration at the membrane 
surface, C,, was evaluated for the various 
system conditions when the solute diffusion 

coefficient is dependent upon the solute con- 
centration. Let us now, with the help of an 
illustrative example, look at how the information 
obtained in the present analysis can be used to 
obtain the operating pressure for a specific 
reverse osmosis unit. 

Brian [7] reports that assuming the osmotic 
pressure is directly proportional to the solute 
concentration and that pressure drop across 
membrane, AP, is essentially constant, the 
following relationship can be written for the 
average permeation flux, VW, over the entire 
channel 

where 

VW = 1 - ;is (12) 

J = s710 
AP - Sn, 

(13) 

and 
X 

t=f (C, - l)dX’. 
s 
0 

(14) 

In equation (13) rto is the osmotic pressure at 
the inlet feed concentration. For the given values 
of VW, X, a,, S and from the results shown in 
Figs, 2-7, BP, the required design parameter, 
can be calculated from equations (12H14). This 
type of calculation for an hypothetical reverse 
osmosis unit used for the concentration of 
sucroseewater solution is briefly outlined below. 
The following data are used in this calculation. 

s = 1.0 
a, = 05 (evaluated at the average permeation 

flux) 
VW = 0.30 
rro = 36 p.s.i. (obtained from [9] assuming 

the molality of the feed solution to be 0.1) 
cI = clo ,-O.OlC (an approximate relation 

obtained from the diffusivity-concentra- 
tion data for the sucrose-water system 
reported in [9]) (15) 

x = 025. 

Assuming c1 to be constant at the value of clo, 
from equation (14) and Fig. 4, p can be calculated 
to be equal to l-266. Similarly assuming a to be 
function of concentration as given by equation 
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(15), 5 can be calculated to be l-390. The mem- 
brane wall concentration as a function of X for 
the diffusivity-concentration relationship de- 
fined by equation (15) was obtained by the linear 
interpolations between the C, vs. X curves for 
a = 0.5 exp (-0.05 C) and a = 0.5 shown in Fig. 
4. Thus, from equations (12) and (13) and using the 
data listed above, the values of AP for the two 
cases can be calculated to be approximately 
equal to 101 p.s.i. and 108 p.s.i. respectively. 
This means that even for a small value of X 
examined here, there would be approximately 
7 per cent error in the calculation of BP if the 
diffusivity were to be assumed constant at 
its channel inlet value. It should be noted that 
the difference in the BP values for the constant 
and the variable diffusivity cases will increase 
rapidly with increase in X because as shown in 
Fig. 4, the membrane wall concentrations for the 
two cases diverges from each other more and 
more with increasing value of X. It should also 
be noted that the calculation of 5 can also be 
carried out with the help of results similar to 
ones shown in Figs. 2, 3, 5-7 because P and 5 
are related to each other as shown by equation 

(IO). 
CONCLUSION 

It is concluded from the present study that 
the net effect of decrease in diffusivity with 
concentration is to increase solute build-up at 
the membrane surface in a reverse osmosis 
process. This increment is larger for a stronger 
diffusivity-concentration relationship. The 
theoretical results of Sherwood et al. [6] and 
Brian [l, 71 for the case of constant diffusivity 
can be used to calculate concentration polariza- 
tion moduli at various downstream positions in 
the case of variable diffusivity by the method 
proposed in this paper. 
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TRANSPORT MASSIQUE DANS L’OSMOSE INVERSE DANS LE CAS D’UNE DIFFUSIVITE 
VARIABLE 

R6sam&Cet article analyse le problbme de polarisation par concentration darts l’osmose inverse lorsque 
la diffusivitt depend de la concentration. On obtient une solution numerique de l’equation du transport 
massique pour I’ecoulement laminaire a travers deux membranes parallbles, plates et egalement permeables. 
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On consid&e trois types de relations entre diffusivitt et concentration, une lintaire. une exponentielle et 
une parabolique. On trouve que la dCcroissance de la diffusivitC avec un accroissement de concentration, 

augmente la valeur du module de polarisation par concentration par rapport B celle obtenue dans le cas 

d’une diffusivit& constante dans Ies mbmes conditions du systbme. L’au~entation est plus grande dans 
le cas d’une relation entre diffusivite et concen~ation plus forte, et pour une plus grande concentration B 
la paroi de la membrane. On propose une mkthode par iaquelle l’effet de diffusivitC variable sur la vaieur 

du module de polarisation par concentration peut etre calcult pour une large gamme de conditions 
pratiques en utilisant les r&sultats thCoriques existants dans le cas d’une diffusion constante. 

STOFF~BERTRAGUNG BEI UMGEKEHRTER OSMOSE FOR DEN FALL 
VER~NDERLICHER ~URCH~SSIGKEIT 

Zusammenfassung-Die Arbeit analysiert das Problem der Konzentrationspolarisation bei umgekehrtcr 
Osmose fiir den Fall konzentrationsabhlngiger DurchlBssigkeit. Das Ergebnis ist eine numerische Lijsung 
der Stofftransportgleichung fiir die laminare Strijmung durch 2 gleich durchlIssige, flache, parallele 
Membranen Es werden 3 Arten der Abhiingigkeit der Durchkissigkeit von der Konzentration untersucht : 
eine Iineare, eine exponentielle und eine parabolische Abhsngigkeit und 2 Werte von L~sungsundurchl~s- 
sigkeit Die Abnahme der Durchl~ssigkejt mit dem Ansteigen der Konzentration erh6ht den Konzen- 
trations-Polarisations-Modul gegeniiber den Werten fiir den Fall konstanter Durchlhsigkeit bei sonst 
gleichen Systembedingungen Ftir eine stLrkere Abhangigkeit der Durchllssigkeit von der Konzentration 
und fiir hiihere Werte der Konzentration an der Membran ist diese Erh6hung grbsser. 

Es wird eine Methode vorgeschlagen. mit deren Hilfe die Wirkung der veriinderlichen Durchllssigkeit 
auf die Grijsse des Konzentrations-Polarisations-Moduls in einem weiten Bereich praktisch vorkom- 
mender Bedingungen berechnet werden kann, wobei die vorhandenen theoretischen Liisungen fiir den 

Fall konstanter Durchl~ssi~eit beniitzt werden 

fiHf!@#YWII C yBWIllYeHLIeM KOHr(eHTpa~kIH BbI3bIBXT ~nWIIlYeIIlfe MOlI)-JIfI IiOIl~t’IlT~‘al(IlOlItlO~i 

IIOJIIIp3i3a~HIf ItO CpaBHeHXKl CO 3HaYL?HIfeM, IIORYyeHHbIM II C.‘fgYae IIOCTOHHIUJI’O !iO- 

e~~~r~~eKTa ~Ii~~y31i~f rfpg~ Tex ?fEe ycno~r~rrs. HairzeKO, 9To ~~~~ffyeIfift? liuabw j[iIfi 

CJIyY3f-i 60X6X CIf~bHO~ 3aB~C~~IOCT~~ KOe~~~l~~leHTa ~~I~~y3ffIiII OT f~O~~~eIIT~)a4ifII IIii 

CTeHKf? MeM6paHE.I. &X!~~O~aIWTCR MeTOg, C IIOMOII(bIO KOTOPOI-0 BJIWIIm IlepOM~IIHOfO 

K03@@lL(IIeHTa JI449’3E1I1 Ha 3HaYeHHeM MOJ’Q-JIfI KOHqE!HT~3~EIOHHO8 IIOJIfI~~Ii3aIUIH MOXeT 

~EiCCYHTbIB3TbCfI ,i&JIR LULipOKOPO ~~IXI33OII3 J’CJIOl3IIi%, IICIIOZb3~R Tt?OpeTIIjWKIlt? [‘“:I)-JIbTaTbI 

&TIH CJIJ’YWI IIOCTOHHHO~O KO3~$lIfI~IIeIlTLl XIf@l#i~3I11I. 


